Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.179
Filtrar
1.
Arq Bras Cardiol ; 121(2): e20230405, 2024.
Artigo em Português, Inglês | MEDLINE | ID: mdl-38597541

RESUMO

BACKGROUND: Systemic arterial hypertension is a risk factor for cardiac, renal, and metabolic dysfunction. The search for new strategies to prevent and treat cardiovascular diseases led to the synthesis of new N-acylhydrazones to produce antihypertensive effect. Adenosine receptors are an alternative target to reduce blood pressure because of their vasodilatory action and antioxidant properties, which may reduce oxidative stress characteristic of systemic arterial hypertension. OBJECTIVE: To evaluate the antihypertensive profile of novel selenium-containing compounds designed to improve their interaction with adenosine receptors. METHODS: Vascular reactivity was evaluated by recording the isometric tension of pre-contracted thoracic aorta of male Wistar rats after exposure to increasing concentrations of each derivative (0.1 to 100 µM). To investigate the antihypertensive effect in spontaneously hypertensive rats, systolic, diastolic, and mean arterial pressure and heart rate were determined after intravenous administration of 10 and 30 µmol/kg of the selected compound LASSBio-2062. RESULTS: Compounds named LASSBio-2062, LASSBio-2063, LASSBio-2075, LASSBio-2076, LASSBio-2084, LASSBio-430, LASSBio-2092, and LASSBio-2093 promoted vasodilation with mean effective concentrations of 15.5 ± 6.5; 14.6 ± 2.9; 18.7 ± 9.6; 6.7 ± 4.1; > 100; 6.0 ± 3.6; 37.8 ± 11.8; and 15.9 ± 5.7 µM, respectively. LASSBio-2062 (30 µmol/kg) reduced mean arterial pressure in spontaneously hypertensive rats from 124.6 ± 8.6 to 72.0 ± 12.3 mmHg (p < 0.05). Activation of adenosine receptor subtype A3 and potassium channels seem to be involved in the antihypertensive effect of LASSBio-2062. CONCLUSIONS: The new agonist of adenosine receptor and activator of potassium channels is a potential therapeutic agent to treat systemic arterial hypertension.


FUNDAMENTO: A hipertensão arterial sistêmica é um fator de risco para disfunções cardíacas, renais e metabólicas. A busca por novas estratégias para prevenir e tratar doenças cardiovasculares levou à síntese de novas N-acilidrazonas para produzir efeito anti-hipertensivo. Os receptores de adenosina são um alvo alternativo para reduzir a pressão arterial devido à sua ação vasodilatadora e propriedades antioxidantes, que podem reduzir o estresse oxidativo característico da hipertensão arterial sistêmica. OBJETIVO: Avaliar o perfil anti-hipertensivo de novos compostos contendo selênio desenvolvidos para melhorar sua interação com os receptores de adenosina. MÉTODOS: Foi avaliada a reatividade vascular, registrando-se a tensão isométrica da aorta torácica pré-contraída de ratos Wistar machos após exposição a concentrações crescentes de cada derivado (0,1 a 100 µM). Para investigar o efeito anti-hipertensivo em ratos espontaneamente hipertensos, foram determinadas a pressão arterial sistólica, pressão arterial diastólica, pressão arterial média e a frequência cardíaca após administração intravenosa de 10 e 30 µmol/kg do composto selecionado LASSBio-2062. RESULTADOS: Os compostos denominados LASSBio-2062, LASSBio-2063, LASSBio-2075, LASSBio-2076, LASSBio-2084, LASSBio-430, LASSBio-2092 e LASSBio-2093 promoveram vasodilatação com concentrações efetivas médias de 15,5 ± 6,5; 14,6 ± 2,9; 18,7 ± 9,6; 6,7 ± 4,1; > 100; 6,0 ± 3,6; 37,8 ± 11,8; e 15,9 ± 5,7 µM, respectivamente. O LASSBio-2062 (30 µmol/kg) reduziu a pressão arterial média em ratos espontaneamente hipertensos de 124,6 ± 8,6 para 72,0 ± 12,3 mmHg (p < 0,05). A ativação do receptor de adenosina subtipo A3 e dos canais de potássio parece estar envolvida no efeito anti-hipertensivo do LASSBio-2062. CONCLUSÕES: O novo agonista do receptor de adenosina e ativador dos canais de potássio é um potencial agente terapêutico para o tratamento da hipertensão arterial sistêmica.


Assuntos
Anti-Hipertensivos , Hipertensão , Ratos , Animais , Masculino , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Ratos Endogâmicos SHR , Ratos Wistar , Hipertensão/tratamento farmacológico , Pressão Sanguínea , Canais de Potássio
2.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612888

RESUMO

Ionic channels are present in eucaryotic plasma and intracellular membranes. They coordinate and control several functions. Potassium channels belong to the most diverse family of ionic channels that includes ATP-dependent potassium (KATP) channels in the potassium rectifier channel subfamily. These channels were initially described in heart muscle and then in other tissues such as pancreatic, skeletal muscle, brain, and vascular and non-vascular smooth muscle tissues. In pancreatic beta cells, KATP channels are primarily responsible for maintaining the membrane potential and for depolarization-mediated insulin release, and their decreased density and activity may be related to insulin resistance. KATP channels' relationship with insulin resistance is beginning to be explored in extra-pancreatic beta tissues like the skeletal muscle, where KATP channels are involved in insulin-dependent glucose recapture and their activation may lead to insulin resistance. In adipose tissues, KATP channels containing Kir6.2 protein subunits could be related to the increase in free fatty acids and insulin resistance; therefore, pathological processes that promote prolonged adipocyte KATP channel inhibition might lead to obesity due to insulin resistance. In the central nervous system, KATP channel activation can regulate peripheric glycemia and lead to brain insulin resistance, an early peripheral alteration that can lead to the development of pathologies such as obesity and Type 2 Diabetes Mellitus (T2DM). In this review, we aim to discuss the characteristics of KATP channels, their relationship with clinical disorders, and their mechanisms and potential associations with peripheral and central insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Canais de Potássio , Insulina , Insulina Regular Humana , Hormônios Pancreáticos , Canais KATP , Obesidade , Potássio , Trifosfato de Adenosina
3.
Proc Natl Acad Sci U S A ; 121(18): e2318666121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652747

RESUMO

In bacteria, intracellular K+ is involved in the regulation of membrane potential, cytosolic pH, and cell turgor as well as in spore germination, environmental adaptation, cell-to-cell communication in biofilms, antibiotic sensitivity, and infectivity. The second messenger cyclic-di-AMP (c-di-AMP) has a central role in modulating the intracellular K+ concentration in many bacterial species, controlling transcription and function of K+ channels and transporters. However, our understanding of how this regulatory network responds to c-di-AMP remains poor. We used the RCK (Regulator of Conductance of K+) proteins that control the activity of Ktr channels in Bacillus subtilis as a model system to analyze the regulatory function of c-di-AMP with a combination of in vivo and in vitro functional and structural characterization. We determined that the two RCK proteins (KtrA and KtrC) are neither physiologically redundant or functionally equivalent. KtrC is the physiologically dominant RCK protein in the regulation of Ktr channel activity. In explaining this hierarchical organization, we found that, unlike KtrA, KtrC is very sensitive to c-di-AMP inactivation and lack of c-di-AMP regulation results in RCK protein toxicity, most likely due to unregulated K+ flux. We also found that KtrC can assemble with KtrA, conferring c-di-AMP regulation to the functional KtrA/KtrC heteromers and potentially compensating KtrA toxicity. Altogether, we propose that the central role of c-di-AMP in the control of the K+ machinery, by modulating protein levels through gene transcription and by regulating protein activity, has determined the evolutionary selection of KtrC as the dominant RCK protein, shaping the hierarchical organization of regulatory components of the K+ machinery.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Potássio/metabolismo , Regulação Bacteriana da Expressão Gênica , Fosfatos de Dinucleosídeos/metabolismo , Canais de Potássio/metabolismo , Canais de Potássio/genética
5.
Nat Commun ; 15(1): 3480, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658537

RESUMO

The analysis of neural circuits has been revolutionized by optogenetic methods. Light-gated chloride-conducting anion channelrhodopsins (ACRs)-recently emerged as powerful neuron inhibitors. For cells or sub-neuronal compartments with high intracellular chloride concentrations, however, a chloride conductance can have instead an activating effect. The recently discovered light-gated, potassium-conducting, kalium channelrhodopsins (KCRs) might serve as an alternative in these situations, with potentially broad application. As yet, KCRs have not been shown to confer potent inhibitory effects in small genetically tractable animals. Here, we evaluated the utility of KCRs to suppress behavior and inhibit neural activity in Drosophila, Caenorhabditis elegans, and zebrafish. In direct comparisons with ACR1, a KCR1 variant with enhanced plasma-membrane trafficking displayed comparable potency, but with improved properties that include reduced toxicity and superior efficacy in putative high-chloride cells. This comparative analysis of behavioral inhibition between chloride- and potassium-selective silencing tools establishes KCRs as next-generation optogenetic inhibitors for in vivo circuit analysis in behaving animals.


Assuntos
Caenorhabditis elegans , Neurônios , Optogenética , Peixe-Zebra , Animais , Caenorhabditis elegans/genética , Neurônios/metabolismo , Neurônios/fisiologia , Optogenética/métodos , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Humanos , Drosophila , Canais de Potássio/metabolismo , Canais de Potássio/genética , Cloretos/metabolismo , Animais Geneticamente Modificados , Comportamento Animal , Células HEK293 , Drosophila melanogaster
6.
J Gen Physiol ; 156(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38652080

RESUMO

Cannabidiol (CBD), the main non-psychotropic phytocannabinoid produced by the Cannabis sativa plant, blocks a variety of cardiac ion channels. We aimed to identify whether CBD regulated the cardiac pacemaker channel or the hyperpolarization-activated cyclic nucleotide-gated channel (HCN4). HCN4 channels are important for the generation of the action potential in the sinoatrial node of the heart and increased heart rate in response to ß-adrenergic stimulation. HCN4 channels were expressed in HEK 293T cells, and the effect of CBD application was examined using a whole-cell patch clamp. We found that CBD depolarized the V1/2 of activation in holo-HCN4 channels, with an EC50 of 1.6 µM, without changing the current density. CBD also sped activation kinetics by approximately threefold. CBD potentiation of HCN4 channels occurred via binding to the closed state of the channel. We found that CBD's mechanism of action was distinct from cAMP, as CBD also potentiated apo-HCN4 channels. The addition of an exogenous PIP2 analog did not alter the ability of CBD to potentiate HCN4 channels, suggesting that CBD also acts using a unique mechanism from the known HCN4 potentiator PIP2. Lastly, to gain insight into CBD's mechanism of action, computational modeling and targeted mutagenesis were used to predict that CBD binds to a lipid-binding pocket at the C-terminus of the voltage sensor. CBD represents the first FDA-approved drug to potentiate HCN4 channels, and our findings suggest a novel starting point for drug development targeting HCN4 channels.


Assuntos
Canabidiol , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Proteínas Musculares , Canabidiol/farmacologia , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Células HEK293 , Canais de Potássio/metabolismo , Canais de Potássio/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos
7.
J Gen Physiol ; 156(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38652099

RESUMO

The selectivity filter of K+ channels catalyzes a rapid and highly selective transport of K+ while serving as a gate. To understand the control of this filter gate, we use the pore-only K+ channel KcvNTS in which gating is exclusively determined by the activity of the filter gate. It has been previously shown that a mutation at the C-terminus of the pore-helix (S42T) increases K+ permeability and introduces distinct voltage-dependent and K+-sensitive channel closures at depolarizing voltages. Here, we report that the latter are not generated by intrinsic conformational changes of the filter gate but by a voltage-dependent block caused by nanomolar trace contaminations of Ba2+ in the KCl solution. Channel closures can be alleviated by extreme positive voltages and they can be completely abolished by the high-affinity Ba2+ chelator 18C6TA. By contrast, the same channel closures can be augmented by adding Ba2+ at submicromolar concentrations to the cytosolic buffer. These data suggest that a conservative exchange of Ser for Thr in a crucial position of the filter gate increases the affinity of the filter for Ba2+ by >200-fold at positive voltages. While Ba2+ ions apparently remain only for a short time in the filter-binding sites of the WT channel before passing the pore, they remain much longer in the mutant channel. Our findings suggest that the dwell times of permeating and blocking ions in the filter-binding sites are tightly controlled by interactions between the pore-helix and the selectivity filter.


Assuntos
Bário , Ativação do Canal Iônico , Animais , Bário/farmacologia , Bário/metabolismo , Mutação , Canais de Potássio/metabolismo , Canais de Potássio/genética , Humanos , Potássio/metabolismo
8.
Elife ; 122024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652113

RESUMO

Lymphoid restricted membrane protein (LRMP) is a specific regulator of the hyperpolarization-activated cyclic nucleotide-sensitive isoform 4 (HCN4) channel. LRMP prevents cAMP-dependent potentiation of HCN4, but the interaction domains, mechanisms of action, and basis for isoform-specificity remain unknown. Here, we identify the domains of LRMP essential for this regulation, show that LRMP acts by disrupting the intramolecular signal transduction between cyclic nucleotide binding and gating, and demonstrate that multiple unique regions in HCN4 are required for LRMP isoform-specificity. Using patch clamp electrophysiology and Förster resonance energy transfer (FRET), we identified the initial 227 residues of LRMP and the N-terminus of HCN4 as necessary for LRMP to associate with HCN4. We found that the HCN4 N-terminus and HCN4-specific residues in the C-linker are necessary for regulation of HCN4 by LRMP. Finally, we demonstrated that LRMP-regulation can be conferred to HCN2 by addition of the HCN4 N-terminus along with mutation of five residues in the S5 region and C-linker to the cognate HCN4 residues. Taken together, these results suggest that LRMP inhibits HCN4 through an isoform-specific interaction involving the N-terminals of both proteins that prevents the transduction of cAMP binding into a change in channel gating, most likely via an HCN4-specific orientation of the N-terminus, C-linker, and S4-S5 linker.


Assuntos
AMP Cíclico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Proteínas de Membrana , Proteínas Musculares , Receptores Citoplasmáticos e Nucleares , Transdução de Sinais , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , AMP Cíclico/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Animais , Ligação Proteica , Células HEK293 , Canais de Potássio/metabolismo , Canais de Potássio/genética , Canais de Potássio/química , Técnicas de Patch-Clamp , Transferência Ressonante de Energia de Fluorescência , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética
9.
Physiol Rep ; 12(6): e15992, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38538032

RESUMO

Aorta, the largest vessel in the body, is generally considered anatomically homogeneous, yet spatial functional differences exist. In our study, we conducted a comprehensive analysis by reexamining public RNA-SEQ data, comparing expression patterns between thoracic and abdominal aorta. Additionally, we measured acetylcholine-induced relaxations of the different regions of thoracic aorta in Wistar Rats. Our results revealed a distinct percentage difference in acetylcholine-induced relaxation in the proximal and distal segments of the thoracic aorta (p = 1.14e-4). To explain this variation, we performed differential expression analysis of previously published RNA-sequencing data between thoracic and abdominal aorta, which showed 497 differentially expressed genes between these locations. From results of RNA-Seq analysis, we draw a hypothesis that differential expressions of the potassium inward rectifying channels (KIR) and voltage gated calcium channels (VGCC) presumably located on SMC, with higher expression in the distal thoracic segments in comparison with the proximal thoracic segments of aorta, can explain differences in acetylcholine-induced relaxation. Notably, specific blockade of KIR eliminated differences between the proximal and distal regions of thoracic aorta, underscoring their significance in understanding the spatial nuances in aortic behavior, also blockade of VGCC, shows a higher effect on basal tone, in distal region of thoracic aorta in comparison with proximal.


Assuntos
Acetilcolina , Aorta Torácica , Ratos , Masculino , Animais , Acetilcolina/farmacologia , Ratos Wistar , Endotélio Vascular , Vasodilatação , Aorta Abdominal , Canais de Potássio , Canais de Cálcio
10.
PLoS Comput Biol ; 20(3): e1011559, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517941

RESUMO

Cyclic AMP controls neuronal ion channel activity. For example hyperpolarization-activated cyclic nucleotide-gated (HCN) and M-type K+ channels are activated by cAMP. These effects have been suggested to be involved in astrocyte control of neuronal activity, for example, by controlling the action potential firing frequency. In cortical neurons, cAMP can induce mixed-mode oscillations (MMOs) consisting of small-amplitude, subthreshold oscillations separating complete action potentials, which lowers the firing frequency greatly. We extend a model of neuronal activity by including HCN and M channels, and show that it can reproduce a series of experimental results under various conditions involving and inferring with cAMP-induced activation of HCN and M channels. In particular, we find that the model can exhibit MMOs as found experimentally, and argue that both HCN and M channels are crucial for reproducing these patterns. To understand how M and HCN channels contribute to produce MMOs, we exploit the fact that the model is a three-time scale dynamical system with one fast, two slow, and two super-slow variables. We show that the MMO mechanism does not rely on the super-slow dynamics of HCN and M channel gating variables, since the model is able to produce MMOs even when HCN and M channel activity is kept constant. In other words, the cAMP-induced increase in the average activity of HCN and M channels allows MMOs to be produced by the slow-fast subsystem alone. We show that the slow-fast subsystem MMOs are due to a folded node singularity, a geometrical structure well known to be involved in the generation of MMOs in slow-fast systems. Besides raising new mathematical questions for multiple-timescale systems, our work is a starting point for future research on how cAMP signalling, for example resulting from interactions between neurons and glial cells, affects neuronal activity via HCN and M channels.


Assuntos
Nucleotídeos Cíclicos , Canais de Potássio , Canais de Potássio/química , Nucleotídeos Cíclicos/farmacologia , Neurônios , AMP Cíclico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos
11.
Free Radic Biol Med ; 217: 15-28, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522485

RESUMO

OBJECTIVE: Mitochondrial ATP-sensitive K+ (mitoKATP) channels are involved in neuronal and cardiac protection from ischemia and oxidative stress. Penile erection is a neurovascular event mediated by relaxation of the erectile tissue via nitric oxide (NO) released from nerves and endothelium. In the present study, we investigated whether mitoKATP channels play a role in the control of penile vascular tone and mitochondrial dynamics, and the involvement of NO. METHODS: The effect of the selective mitoKATP activator BMS191095 was examined on vascular tone, on mitochondrial bioenergetics by real-time measurements with Agilent Seahorse and on ROS production by MitoSOX fluorescence in freshly isolated microarteries. RESULTS: BMS191095 and diazoxide relaxed penile arteries, BMS191095 being one order of magnitude more potent. BMS191095-induced relaxations were reduced by mechanical endothelium removal and by inhibitors of the nitric oxide synthase (NOS) and PI3K enzymes. The NO-dependent component of the relaxation to BMS191095 was impaired in penile arteries from insulin resistant obese rats. The blockers of mitoKATP channel 5-HD, sarcolemma KATP (sarcKATP) channel glibenclamide, and large conductance Ca2+-activated K+ (BKCa) channel iberiotoxin, inhibited relaxations to BMS191095 and to the NO donor SNAP. BMS191095 reduced the mitochondrial bioenergetic profile of penile arteries and attenuated mitochondrial ROS production. Blockade of endogenous NO impaired and exogenous NO mimicked, respectively, the inhibitory effects of BMS191095 on basal respiration and oxygen consumed for ATP synthesis. Exogenous NO exhibited dual inhibitory/stimulatory effects on mitochondrial respiration. CONCLUSIONS: These results demonstrate that selective activation of mitoKATP channels causes penile vasodilation, attenuates ROS production and inhibits mitochondrial respiration in part by releasing endothelial NO. These mechanisms couple blood flow and metabolism in penile arterial wall and suggest that activation of vascular mitoKATP channels may protect erectile tissue against ischemic injury.


Assuntos
Óxido Nítrico , Canais de Potássio , Vasodilatação , Masculino , Ratos , Animais , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina , Respiração
12.
Int Heart J ; 65(2): 372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556346

RESUMO

Several errors (shown with underlines) in the following list appeared in the article "Effect of Thimerosal on Arrhythmia Induced by Coronary Ligation: The Involvement of ATP-dependent Potassium Channels" by Ömer Bozdogan, Ersöz Gonca, Melih Nebigil, Eylem Suveren Tiryaki (Vol. 46 No.4, 711-721, 2005).


Assuntos
Canais de Potássio , Timerosal , Humanos , Timerosal/farmacologia , Arritmias Cardíacas/etiologia , Trifosfato de Adenosina/farmacologia
13.
Physiol Rep ; 12(6): e15980, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38503563

RESUMO

Voltage-gated K+ (KV ) and Ca2+ -activated K+ (KCa ) channels are essential proteins for membrane repolarization in excitable cells. They also play important physiological roles in non-excitable cells. Their diverse physiological functions are in part the result of their auxiliary subunits. Auxiliary subunits can alter the expression level, voltage dependence, activation/deactivation kinetics, and inactivation properties of the bound channel. KV and KCa channels are activated by membrane depolarization through the voltage-sensing domain (VSD), so modulation of KV and KCa channels through the VSD is reasonable. Recent cryo-EM structures of the KV or KCa channel complex with auxiliary subunits are shedding light on how these subunits bind to and modulate the VSD. In this review, we will discuss four examples of auxiliary subunits that bind directly to the VSD of KV or KCa channels: KCNQ1-KCNE3, Kv4-DPP6, Slo1-ß4, and Slo1-γ1. Interestingly, their binding sites are all different. We also present some examples of how functionally critical binding sites can be determined by introducing mutations. These structure-guided approaches would be effective in understanding how VSD-bound auxiliary subunits modulate ion channels.


Assuntos
Canais Iônicos , Canais de Potássio , Sítios de Ligação
14.
Cell Rep ; 43(3): 113904, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38457342

RESUMO

The KCNT1 gene encodes the sodium-activated potassium channel Slack (KCNT1, KNa1.1), a regulator of neuronal excitability. Gain-of-function mutations in humans cause cortical network hyperexcitability, seizures, and severe intellectual disability. Using a mouse model expressing the Slack-R455H mutation, we find that Na+-dependent K+ (KNa) and voltage-dependent sodium (NaV) currents are increased in both excitatory and inhibitory cortical neurons. These increased currents, however, enhance the firing of excitability neurons but suppress that of inhibitory neurons. We further show that the expression of NaV channel subunits, particularly that of NaV1.6, is upregulated and that the length of the axon initial segment and of axonal NaV immunostaining is increased in both neuron types. Our study on the coordinate regulation of KNa currents and the expression of NaV channels may provide an avenue for understanding and treating epilepsies and other neurological disorders.


Assuntos
Epilepsia , Canais de Potássio , Humanos , Axônios/metabolismo , Epilepsia/genética , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Canais de Potássio/metabolismo , Canais de Potássio Ativados por Sódio , Animais , Camundongos
15.
Commun Biol ; 7(1): 262, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438714

RESUMO

Potassium Channel Tetramerization Domain Containing 15 (KCTD15) participates in the carcinogenesis of several solid malignancies; however, its role in colorectal cancer (CRC) remains unclear. Here we find that KCTD15 exhibits lower expression in CRC tissues as compared to para-carcinoma tissues. Tetracycline (tet)-induced overexpression and knockdown of KCTD15 confirms KCTD15 as an anti-proliferative and pro-apoptotic factor in CRC both in vitro and in xenografted tumors. N6-methyladenosine (m6A) is known to affect the expression, stabilization, and degradation of RNAs with this modification. We demonstrate that upregulation of fat mass and obesity-associated protein (FTO), a classical m6A eraser, prevents KCTD15 mRNA degradation in CRC cells. Less KCTD15 RNA is recognized by m6A 'reader' YTH N6-Methyladenosine RNA Binding Protein F2 (YTHDF2) in FTO-overexpressed cells. Moreover, KCTD15 overexpression decreases protein expression of histone deacetylase 1 (HDAC1) but increases acetylation of critical tumor suppressor p53 at Lys373 and Lys382. Degradation of p53 is delayed in CRC cells post-KCTD15 overexpression. We further show that the regulatory effects of KCTD15 on p53 are HDAC1-dependent. Collectively, we conclude that KCTD15 functions as an anti-growth factor in CRC cells, and its expression is orchestrated by the FTO-YTHDF2 axis. Enhanced p53 protein stabilization may contribute to KCTD15's actions in CRC cells.


Assuntos
Adenina/análogos & derivados , Carcinoma , Neoplasias Colorretais , Humanos , Proteína Supressora de Tumor p53 , Carcinogênese , Neoplasias Colorretais/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Canais de Potássio , Proteínas de Ligação a RNA/genética
16.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396807

RESUMO

ATP-sensitive potassium (KATP) channels are found in plasma membranes and mitochondria. These channels are a type of ion channel that is regulated by the intracellular concentration of adenosine triphosphate (ATP) and other nucleotides. In cell membranes, they play a crucial role in linking metabolic activity to electrical activity, especially in tissues like the heart and pancreas. In mitochondria, KATP channels are involved in protecting cells against ischemic damage and regulating mitochondrial function. This review delves into the role of KATP channels in cancer biology, underscoring their critical function. Notably responsive to changes in cellular metabolism, KATP channels link metabolic states to electrical activity, a feature that becomes particularly significant in cancer cells. These cells, characterized by uncontrolled growth, necessitate unique metabolic and signaling pathways, differing fundamentally from normal cells. Our review explores the intricate roles of KATP channels in influencing the metabolic and ionic balance within cancerous cells, detailing their structural and operational mechanisms. We highlight the channels' impact on cancer cell survival, proliferation, and the potential of KATP channels as therapeutic targets in oncology. This includes the challenges in targeting these channels due to their widespread presence in various tissues and the need for personalized treatment strategies. By integrating molecular biology, physiology, and pharmacology perspectives, the review aims to enhance the understanding of cancer as a complex metabolic disease and to open new research and treatment avenues by focusing on KATP channels. This comprehensive approach provides valuable insights into the potential of KATP channels in developing innovative cancer treatments.


Assuntos
Trifosfato de Adenosina , Neoplasias , Trifosfato de Adenosina/metabolismo , Canais de Potássio/metabolismo , Nucleotídeos/metabolismo , Mitocôndrias/metabolismo , Canais KATP , Neoplasias/tratamento farmacológico
17.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38410843

RESUMO

In the African weakly electric fish genus Campylomormyrus, electric organ discharge signals are strikingly different in shape and duration among closely related species, contribute to prezygotic isolation, and may have triggered an adaptive radiation. We performed mRNA sequencing on electric organs and skeletal muscles (from which the electric organs derive) from 3 species with short (0.4 ms), medium (5 ms), and long (40 ms) electric organ discharges and 2 different cross-species hybrids. We identified 1,444 upregulated genes in electric organ shared by all 5 species/hybrid cohorts, rendering them candidate genes for electric organ-specific properties in Campylomormyrus. We further identified several candidate genes, including KCNJ2 and KLF5, and their upregulation may contribute to increased electric organ discharge duration. Hybrids between a short (Campylomormyrus compressirostris) and a long (Campylomormyrus rhynchophorus) discharging species exhibit electric organ discharges of intermediate duration and showed imbalanced expression of KCNJ2 alleles, pointing toward a cis-regulatory difference at this locus, relative to electric organ discharge duration. KLF5 is a transcription factor potentially balancing potassium channel gene expression, a crucial process for the formation of an electric organ discharge. Unraveling the genetic basis of the species-specific modulation of the electric organ discharge in Campylomormyrus is crucial for understanding the adaptive radiation of this emerging model taxon of ecological (perhaps even sympatric) speciation.


Assuntos
Peixe Elétrico , Animais , Peixe Elétrico/genética , Alelos , Órgão Elétrico/metabolismo , Regulação para Cima , Canais de Potássio/genética
18.
CNS Neurosci Ther ; 30(2): e14627, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38353058

RESUMO

BACKGROUND: Systemic inflammation in which lipopolysaccharide (LPS) is released into circulation can cause cognitive dysfunction and we have previously shown that LPS impaired working memory (WM) which refers to the ability to guide incoming behavior by retrieving recently acquired information. However, the mechanism is not very clear, and currently, there is no approved strategy to improve inflammation-induced WM deficit. Notably, epidemiological studies have demonstrated a lower occurrence rate of inflammatory-related diseases in smoking patients, suggesting that inflammation-induced WM impairment may be improved by nicotine treatment. Here, our object is to investigate the effect and potential mechanisms of acute and chronic nicotine treatment on LPS-produced WM deficiency. METHODS: Delayed alternation T-maze task (DAT) was applied for evaluating WM which includes both the short-term information storage and the ability to correct errors in adult male mice. Immunofluorescence staining and immunoblotting were used for assessing the levels and distribution of CREB-regulated transcription coactivator 1 (CRTC1) and hyperpolarization-activated cation channels 2 (HCN2) in the medial prefrontal cortex (mPFC) and hippocampus. Quantitative PCR and ELISA were employed for analyzing the mRNA and protein levels of TNF-α and IL-1ß. RESULTS: Our results revealed that administration of LPS (i.p.) at a dose of 0.5 mg/kg significantly produced WM impairment in the DAT task accompanied by an increase in IL-1ß and TNF-α expression in the mPFC. Moreover, intra-mPFC infusion of IL-1Ra, an IL-1 antagonist, markedly alleviated LPS-induced WM deficiency. More important, chronic (2 weeks) but not acute nicotine (0.2 mg/kg, subcutaneous) treatment significantly alleviated LPS-induced WM deficiency by upregulating CRTC1 and HCN2. Of note, intra-mPFC infusion of HCN blocker ZD7288 produced significant WM deficiency. CONCLUSIONS: In summary, in this study, we show that chronic nicotine treatment ameliorates acute inflammation-induced working memory deficiency by increasing CRTC1 and HCN2 in adult male mice.


Assuntos
Memória de Curto Prazo , Nicotina , Humanos , Camundongos , Masculino , Animais , Memória de Curto Prazo/fisiologia , Nicotina/farmacologia , Nicotina/uso terapêutico , Nicotina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/toxicidade , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Hipocampo/metabolismo , Fatores de Transcrição/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Canais de Potássio/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo
19.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339159

RESUMO

KCTD ((K)potassium Channel Tetramerization Domain-containing) proteins constitute an emerging class of proteins involved in fundamental physio-pathological processes. In these proteins, the BTB domain, which represents the defining element of the family, may have the dual role of promoting oligomerization and favoring functionally important partnerships with different interactors. Here, by exploiting the potential of recently developed methodologies for protein structure prediction, we report a comprehensive analysis of the interactions of all KCTD proteins with their most common partner Cullin 3 (Cul3). The data here presented demonstrate the impressive ability of this approach to discriminate between KCTDs that interact with Cul3 and those that do not. Indeed, reliable and stable models of the complexes were only obtained for the 15 members of the family that are known to interact with Cul3. The generation of three-dimensional models for all KCTD-Cul3 complexes provides interesting clues on the determinants of the structural basis of this partnership as clear structural differences emerged between KCTDs that bind or do not bind Cul3. Finally, the availability of accurate three-dimensional models for KCTD-Cul3 interactions may be valuable for the ad hoc design and development of compounds targeting specific KCTDs that are involved in several common diseases.


Assuntos
Proteínas Culina , Canais de Potássio , Humanos , Sequência de Aminoácidos , Proteínas Culina/química , Canais de Potássio/química , Ligação Proteica , Multimerização Proteica
20.
Adv Sci (Weinh) ; 11(15): e2307237, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350720

RESUMO

Various disorders are accompanied by histamine-independent itching, which is often resistant to the currently available therapies. Here, it is reported that the pharmacological activation of Slack (Kcnt1, KNa1.1), a potassium channel highly expressed in itch-sensitive sensory neurons, has therapeutic potential for the treatment of itching. Based on the Slack-activating antipsychotic drug, loxapine, a series of new derivatives with improved pharmacodynamic and pharmacokinetic profiles is designed that enables to validate Slack as a pharmacological target in vivo. One of these new Slack activators, compound 6, exhibits negligible dopamine D2 and D3 receptor binding, unlike loxapine. Notably, compound 6 displays potent on-target antipruritic activity in multiple mouse models of acute histamine-independent and chronic itch without motor side effects. These properties make compound 6 a lead molecule for the development of new antipruritic therapies targeting Slack.


Assuntos
Loxapina , Canais de Potássio , Camundongos , Animais , Canais de Potássio/metabolismo , Canais de Potássio/uso terapêutico , Histamina/metabolismo , Histamina/uso terapêutico , Antipruriginosos/uso terapêutico , Prurido/tratamento farmacológico , Prurido/metabolismo , Loxapina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...